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Abstract
Considering the transverse perturbation and axially non-planar geometry, the
cylindrical Kadomtsev–Petviashvili (KP) equation is investigated in this paper,
which can describe the propagation of dust-acoustic waves in the dusty plasma
with two-temperature ions. Through imposing the decomposition method,
such a (2+1)-dimensional equation is decomposed into two variable-coefficient
(1+1)-dimensional integrable equations of the same hierarchy. Furthermore,
three kinds of Darboux transformations (DTs) for these two (1+1)-dimensional
equations are constructed. Via the three DTs obtained, the multi-soliton-like
solutions of the cylindrical KP equation are explicitly presented. Especially,
the one- and two-parabola-soliton solutions are discussed by several figures
and some effects resulting from the physical parameters in the dusty plasma
and transverse perturbation are also shown.

PACS numbers: 05.45.Yv, 02.30.Jr, 02.30.Ik, 02.70.Wz

1. Introduction

Owing to the limitation of dimension, the pure one-dimensional models cannot account for all
observed features in the auroral region, especially at higher polar altitudes [1–4]. In realistically
physical situations, the higher dimensional systems with the transverse perturbation may
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provide us with the more useful and powerful models as shown in [1–6]. As a typical example
in (2+1) dimensions, the Kadomtsev–Petviashvili (KP) equation in a planar geometry with
the weakly transverse perturbation has been considerably investigated [7–11]. In fact, a lot of
realistic phenomena observed in laboratory devices are not restricted in a planar geometry, but
usually in a non-planar geometry [1–6]. Therefore, more and more (2+1)-dimensional models
in the non-planar geometry have been derived to describe various nonlinear wave phenomena in
an axially symmetric non-planar cylindrical and/or spherical geometry including the evolution
of the ring dark soliton in a Bose–Einstein condensate with a thin disc-shaped potential [1],
the dust-acoustic wave propagation in a cosmic dusty plasma [2, 3] and the relativistically
magnetosonic solitary wave propagating in a collisionless plasma [6].

In the past few decades, extensive attention has been paid to the dynamics of nonlinear
dust-acoustic waves in the dusty plasma with two-temperature ions [12–16]. Under the
necessary condition ER/ωpd � 1, the validity of the assumption of two-temperature ions
has been verified in various dusty plasma systems including the Saturn’s E-ring, noctilucent
clouds, Halley’s comet and interstellar molecular clouds [12]. In such a consideration, ER

is the energy rate between these two types of ions and ωpd is the characteristic dust plasma

frequency of the system determined by
√

4πnd0Z
2
d0e

2
/
md , where nd0 is the equilibrium value

of the dust particle number density, Zd0 is the dust charge number and md is the dust mass.
As shown in [12–14], it is the small, but finite number density of two-temperature ions that
provides the possibility of the coexistence of large amplitude rarefactive or compressive dust-
density solitary waves. Meanwhile, the effects of two-temperature ions on the behaviour of
dust-acoustic solitary waves have also been discussed in detail [5, 12–16]. Therefore, in order
to describe the abundant nonlinear dust-acoustic wave structures in different dusty plasma
environments, it is necessary to take the two-temperature ions into account.

In this paper, we would like to investigate a variable-coefficient cylindrical KP equation,
which describes the propagation of the two-dimensional dust-acoustic wave in the dusty
plasma consisting of cold dust particles, an unmagnified, collisionless, isothermal electrons
and two-temperature ions [5, 11–21]. Some one-solitary-wave solutions of this equation have
been obtained by using the generalized projected Riccati equation expansion method [5].
Especially, in order to interpret the soliton-like interactions occurring in dusty plasmas, it is
necessary to construct the multi-soliton-like solutions. To our knowledge, the investigation
on constructing the multi-soliton-like structures for the dust-acoustic waves in such a dusty
plasma has not been widespread.

To begin with, let us give a brief retrospect on the derivation of the variable-coefficient
cylindrical KP equation from the dusty plasma with two-temperature ions. When the pressure
of the dust and two-temperature ions are both considered in the dusty plasma with inertial
charged dust fluid and Boltzmann-distributed electrons [5, 11, 15–21], the charge neutrality
at equilibrium requires that nil0 + nih0 = Zd0nd0 + ne0, where nil0(nih0) and ne0 are the
equilibrium values of unperturbed lower (higher) temperature ion and electron, respectively.
The propagation of the two-dimensional dust-acoustic wave in cylindrical geometry is
governed by the following system [5, 11–21]:

∂nd

∂t
+

1

r

∂(rndud)

∂r
+

1

r

∂(ndvd)

∂θ
= 0,

∂ud

∂t
+ ud

∂ud

∂r
+

vd

r

∂ud

∂θ
− v2

d

r
= ∂ψ

∂r
− �

nd

∂pd

∂r
,

∂vd

∂t
+ ud

∂vd

∂r
+

vd

r

∂vd

∂θ
+

vdud

r
= 1

r

∂ψ

∂θ
− �

rnd

∂pd

∂θ
,
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∂pd

∂t
+ ud

∂pd

∂r
+

vd

r

∂pd

∂θ
+ γdpd

[
1

r

∂(rud)

∂r
+

1

r

∂vd

∂θ

]
= 0,

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂θ2
= nd + ne − nil − nih,

where r and θ are the radial and polar angle directions, while nd, pd and ψ are the
number density, pressure of the dust particles and electrostatic potential, respectively. The
parameters ud and vd represent the velocity components of the dust particles in the r and
θ directions. In this case, the variables t, r, (ud, vd), pd and ψ are all normalized by
the dust plasma period ω−1

pd , Debye length λDd =
√

Teff/(4πe2nd0Zd0), effective dust-
acoustic speed Cd = √

Zd0Teff/md, pd0 = nd0ZdTd and Teff/e, respectively. In the above
system, ne (= ν esβ1ψ) is the number density of the Boltzmann-distributed electrons with
temperature Te and equilibrium density ν (= ne0/(Zdnd0)), nil (= µl e−sψ ) is the density
of ion component with low-temperature Til and equilibrium density µl (= nil0/(Zdnd0)),

nih (= µh e−sβ2ψ) is the density of ion component with high-temperature Tih and equilibrium
density µh (= nih0/(Zdnd0)), T

−1
eff = (ne0/Te + nil0/Til + nih0/Tih)/(Zdnd0), � = Td/Teff,

β1 = Til/Te, β2 = Til/Tih and s = Teff/Til. Through the reductive perturbation method and
stretched coordinates as ξ = ε

1
2 (r − ct), η = ε

1
2 θ and τ = ε

3
2 t , where ε is a small parameter

and c is the phase velocity of waves, the variable-coefficient cylindrical KP equation can be
derived as [5, 11–21]

−φτξ + Aφ2
ξ + Aφφξξ − Dφξξξξ − 1

2τ
φξ − 1

2cτ 2
φηη = 0. (1)

It is worth noting that we here only outline the concise derivation process of equation (1), more
details on the physics of dusty plasmas and assumptions in deriving such a model can be seen
in [11–21]. In equation (1), φ is the first approximation of the dust-acoustic wave potential,
A = (

νβ1 − µl − µhβ
2
2 + 2B2 − γdB

2 + c2γdB
3s + c2B3s

)/
(2cB2),D = 1/(2cB2s2), B =

µhβ2 + µl + νβ1 with the equilibrium density of electron component as ν = µl + µh − 1. The
terms φξ/(2τ) and φηη/(2cτ 2) result from the non-planar cylindrical geometry and the latter
also denotes the effect of the transverse perturbation. Actually, equation (1) can also be used
to describe the cylindrical nebulon structures in a cosmic dusty plasma environment such as
the supernova shells or Saturn’s F-ring [2, 22].

This paper is organized as follows. In section 2, through the decomposition method
[26–33], equation (2) will be decomposed into two variable-coefficient (1+1)-dimensional
integrable nonlinear equations, which are the first two non-trivial equations in the same
hierarchy. In section 3, three kinds of Darboux transformations (DTs) will be constructed.
In section 4, based on the obtained three DTs, the one-, two-, three- and four-soliton-like
solutions of equation (1) will be explicitly presented, and the relevant physical mechanisms
will be discussed through the figures for some sample solutions. Section 5 will be our
conclusions.

2. Decomposition of equation (2)

It has been demonstrated that by using suitable constraints many higher dimensional integrable
systems can be decomposed into two lower dimensional integrable systems [26–33], so that
the solutions for the former can be reduced to solve the latter. This also provides a way to
investigate the properties of the higher dimensional systems based on the lower dimensional
integrable systems. Then, with the help of symbolic computation [24, 25], we will employ the
decomposition method to work on equation (1) and construct its multi-soliton-like solutions
in this paper.
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For simplicity, equation (1) can be rewritten into its equivalent form

(ut + 6uux + uxxx)x +
1

2t
ux +

σ 2

t2
uyy = 0 (2)

by the scaling transformation

φ = −6D

A
u(x, y, t), x = ξ, y = ±

√
2c

D
ση, t = Dτ, (3)

where x and y are the scaled ‘space’ and t is the scaled ‘time’, while σ = ±1.
By the decomposition, the investigation on equation (2) will be reduced to deal with

two variable-coefficient equations in (1+1) dimensions. Let us consider the following two
variable-coefficient (1+1)-dimensional nonlinear equations:

Gy +

(
yt

2σ 2
− α1t

σ

)
Gx − 2

√
3εt

σ
GGx − 2

√
3εt

σ
Hx +

√
3εt

σ
Gxx = 0, (4)

Hy +

(
yt

2σ 2
− α1t

σ

)
Hx − 2

√
3εt

σ
(GH)x −

√
3εt

σ
Hxx = 0 (5)

and

Gt −
√

3εy

σ
(2GGx + 2Hx − Gxx) + 4(6GH − 3GGx + G3)x

+

(
y2

4σ 2
− α1y

σ
+ α2

1

)
Gx + 2

√
3εα1(G

2 + 2H − Gx)x + 4Gxxx = 0, (6)

Ht − 2
√

3ε
( y

σ
− 2α1

)
(GH)x + 12(G2H + H 2 + GHx)x

+

(
y2

4σ 2
− yα1

σ
+ α2

1

)
Hx −

√
3ε

( y

σ
− 2α1

)
Hxx + 4Hxxx = 0, (7)

where ε = ±1 and α1 is an arbitrary constant.
We regard (G,H) as a compatible solution of equations (4)–(7) and make the

transformation [26]

u = 2H. (8)

Making use of equations (4)–(7), one can get

Gy = −
(

yt

2σ 2
− α1t

σ

)
Gx +

2
√

3εt

σ
GGx +

√
3εt

σ
ux −

√
3εt

σ
Gxx,

uy = −
(

yt

2σ 2
− α1t

σ

)
ux +

2
√

3εt

σ
(Gu)x +

√
3εt

σ
uxx,

ut = 2
√

3ε
( y

σ
− 2α1

)
(Gu)x − 12

(
G2u +

1

2
u2 + Gux

)
x

−
(

y2

4σ 2
− yα1

σ
+ α2

1

)
ux +

√
3ε

( y

σ
− 2α1

)
uxx − 4uxxx.

With symbolic computation, we can prove that u satisfies equation (2). Therefore, it is clear
that if (G,H) is a compatible solution of equations (4)–(7), then u determined by expression
(8) is a solution of equation (2).
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3. Construction of DTs for equations (4)–(7) with symbolic computation

In this section, we will symbolically construct three kinds of DTs for equations (4)–(7).
Equations (4) and (5) have the following Lax representation:

�x = U�, U =
( 1

2 (−λ − G) −H

1 1
2 (λ + G)

)
, (9)

�y = V �, V =
(

V11 V12

V21 −V11

)
, (10)

with

V11 =
√

3εt

2σ

(
λ2 − G2 − Gx − 2GHx

H
− Hxx

H

)
+

(
yt

4σ 2
− α1t

2σ

)(
λ + G +

Hx

H

)
+

Hy

2H
,

V12 =
√

3εt

σ
(Hλ − Hx − GH) +

(
yt

2σ 2
− α1t

σ

)
H,

V21 =
√

3εt

σ
(−λ + G) +

α1t

σ
− yt

2σ 2
,

where λ is the isospectral parameter. From the compatibility condition Uy − Vx + UV −
V U = 0, one can derive equations (4) and (5).

In addition, the Lax representation of equations (6) and (7) is the spectral problem (9) and
the auxiliary problem

�t = W�, W =
(

W11 W12

W21 −W11

)
, (11)

with

W11 = 2λ3 −
√

3ε

2σ
(y − 2σα1)

(
−λ2 + G2 + Gx + 2

GHx

H
+

Hxx

H

)

+
1

8σ 2
(y − 2σα1)

2 λ + 4λH +
1

2

(
y2

4σ 2
− α1y

σ
+ α2

1

) (
G +

Hx

H

)

+
1

2H
[Ht + 12(GHx)x + 12G2Hx + 4Hxxx]

+ 2Gxx + 6GGx + 8Hx + 2G3 + 4GH,

W12 = 4λ2H − λ

(
4Hx + 4GH + 2

√
3εα1H −

√
3εy

σ
H

)
−

√
3ε

σ
(y − 2σα1)(GH + Hx)

+

(
y2

4σ 2
− α1y

σ
+ α2

1

)
H + 4Hxx + 4HGx + 8GHx + 8H 2 + 4G2H,

W21 = −4λ2 + λ

(
4G + 2

√
3εα1 −

√
3εy

σ

)
+ 4Gx − 4G2

+

√
3ε

σ
(y − 2σα1)G − 8H − y2

4σ 2
+

α1y

σ
− α2

1 .

By virtue of symbolic computation, equations (6) and (7) can be recovered by the compatibility
condition Ut − Wx + UW − WU = 0.
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It is well known that the DT is an important and effective tool to generate the multi-soliton
solutions of integrable NLEEs. For the Lax representation (9)–(11), we can actually construct
three kinds of DTs including two basic DTs and a complex DT, as shown in [32]. In the
following, we assume that the DT has the form

�̂ = T �. (12)

In order to make �̂ satisfy

�̂x = Û�̂, �̂y = V̂ �̂, �̂t = Ŵ �̂, (13)

where Û , V̂ and Ŵ are the same as U,V and W except that G,H,Gx,Hx,Hxx,Hxxx,Hy and
Ht are respectively replaced with Ĝ, Ĥ , Ĝx, Ĥ x, Ĥ xx, Ĥ xxx, Ĥ y and Ĥ t , T must satisfy the
following relations:

Tx + T U − ÛT = 0, (14)

Ty + T V − V̂ T = 0, (15)

Tt + T W − ŴT = 0. (16)

3.1. First DT

Suppose that

T1 = δ1

(
λ + a1 b1

c1 d1

)
, (17)

where δ1, a1, b1, c1 and d1 are all analytic functions of x, y and t to be determined.
Substituting transformation (17) into equation (14) with symbolic computation and

equating the coefficient matrices of the terms λi (i = 0, 1, 2) to be zero, we obtain

Ĝ = G − 2
δ1,x

δ1
, c1 = −1, b1 = H, (18)

Ĥ = H + a1,x , (19)

GH − Hδ1 + Ĥd1 = 0, (20)

G − a1 + d1 − 2
δ1,x

δ1
= 0, (21)

δ1 = β1
1√
d1

, (22)

where β1 is an arbitrary constant. Combining equations (18) and (21) yields

Ĝ = a1 − d1. (23)

On the other hand, let (ϕ1(λ1), ϕ2(λ1))
∗, where the prime * denotes the transpose of the

matrix, be a solution of the Lax representation (9)–(11) with λ = λ1, then we have

(λ1 + a1)ϕ1(λ1) + b1ϕ2(λ1) = 0,

c1ϕ1(λ1) + d1ϕ2(λ1) = 0,

which give rise to

a1 = −λ1 − H
ϕ2(λ1)

ϕ1(λ1)
, d1 = ϕ1(λ1)

ϕ2(λ1)
,
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so Ĝ and Ĥ can be rewritten as

Ĝ = −λ1 − H
ϕ2(λ1)

ϕ1(λ1)
− ϕ1(λ1)

ϕ2(λ1)
, Ĥ = H −

[
H

ϕ2(λ1)

ϕ1(λ1)

]
x

. (24)

With the aid of symbolic computation, it can be proved that equations (20) and (21) are satisfied
automatically.

The key for constructing DT is to make the Lax representation (9)–(11) invariant under
transformation (17). In order to assure transformation (17) is a DT in theory, one has to verify
that it also satisfies equations (15) and (16). The above demonstration is rather intricate since
expressions (10) and (11) are comparatively complicated in the format. Hence, we will use
Mathematica to handle the calculation.

Substituting transformation (17) with the expressions V,W, V̂ and Ŵ into expressions
(10) and (11), we assume that the resulting expressions are of the form

Ty + T V − V̂ T =
(

M11 M12

M21 M22

)
, (25)

Tt + T W − ŴT =
(

N11 N12

N21 N22

)
. (26)

It is shown that the entries Mij and Nij (i, j = 1, 2) are too long and tedious to present
in the paper. However, by virtue of symbolic computation, it is easy to verify that these
expressions with the substitution of ϕi,xxxx(λ1), ϕi,xxx(λ1), ϕi,xx(λ1), ϕi,xy(λ1), ϕi,xt (λ1),

ϕi,x(λ1), ϕi,y(λ1), ϕi,t (λ1),Hxy,Hxt ,Hy,Ht ,Gy and Gt (i = 1, 2) are satisfied automatically.
Therefore, we obtain the explicit expression of the first DT.

3.2. Second DT

Analogous to the process in subsection 3.1, it is easy to show that the second DT is of the form

T2 = δ2

(
a2 b2

c2 λ + d2

)
, (27)

with

a2 = −b2
ϕ2(λ2)

ϕ1(λ2)
, b2 = −H + d2,x, c2 = 1, d2 = −λ2 − ϕ1(λ2)

ϕ2(λ2)
,

δ2 = β2
1√
a2

, Ĝ = G − a2,x

a2
, Ĥ = H − d2,x ,

(28)

where β2 is an arbitrary constant and (ϕ1(λ2), ϕ2(λ2))
∗ is a solution of the Lax representation

(9)–(11) with λ = λ2.

3.3. Third DT

By proceeding as before, the third DT can be expressed as

T3 =
(

δ3(λ + a3) δ3b3

θ3c3 θ3(λ + d3)

)
, (29)

with

a3 = −λ4ϕ2(λ3)ϕ1(λ4) − λ3ϕ1(λ3)ϕ2(λ4)

�
,

b3 = (λ4 − λ3)ϕ1(λ3)ϕ1(λ4)

�
,
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c3 = (λ3 − λ4)ϕ2(λ3)ϕ2(λ4)

�
,

d3 = λ4ϕ1(λ3)ϕ2(λ4) − λ3ϕ2(λ3)ϕ1(λ4)

�
,

δ3 =
√

1 − c3, θ3 = β3√
1 − c3

,

Ĝ = G − ∂

∂x
log(1 − c3), Ĥ = (1 − c3)(H − b3), (30)

where � = ϕ2(λ3)ϕ1(λ4) − ϕ1(λ3)ϕ2(λ4) and β3 is an arbitrary constant, while (ϕ1(λ3),

ϕ2(λ3))
∗ and (ϕ1(λ4), ϕ2(λ4))

∗ are two solutions of the Lax representation (9)–(11) with
λ = λ3 and λ = λ4, respectively.

Considering the similar calculation, we can prove that transformations (27) and (29) are
also indeed DTs. According to the above testifications, these three DTs obtained in this paper
can transform the Lax representation (9)–(11) into the equivalent linear system, i.e., �̂x =
Û�̂, �̂y = V̂ �̂ and �̂t = Ŵ �̂. Consequently, the two Lax representations can give rise to the
same equations (4)–(7) and these three kinds of functions (Ĝ, Ĥ ) defined in subsections 3.1,
3.2 and 3.3 are three new solutions of equations (4)–(7). From what have been investigated in
sections 2 and 3, we can draw the following conclusion.

Let (G,H) be a compatible solution of equations (4)–(7), then (Ĝ, Ĥ ) defined respectively
by equations (24), (28) and (30) are three types of solutions of equations (4)–(7). Thus,

û = 2Ĥ (31)

corresponds to a new solution of the cylindrical KP equation, i.e., equation (2).
In fact, one can prove that T1(λ1)T2(λ2) = T3(λ1, λ2) by symbolic computation (detail

ignored) as in [33]. In other words, if we do the first basic DT to map (G,H) to (Ĝ, Ĥ ) and
then carry out the second basic DT to transform (Ĝ, Ĥ ) to (G2,H2), then we can see that
(G2,H2) is identical with the result through performing the third DT only once.

4. Multi-soliton-like solutions

In this section, the multi-soliton-like solutions of equation (1) will be explicitly constructed
by these three DTs: (17), (27) and (29). We take G = 0 and H = 1 as our ‘seed’ solution
since it is a trivial solution of equations (4)–(7) and u = 2H = 1 is also a paltry solution of
equation (2). Substituting G = 0 and H = 1 into the Lax representation (9)–(11) yields the
solutions with λ = λj (j = 1, 2, 3, . . .) as

ϕ1(λj ) = eκj ζj + e−κj ζj ,

ϕ2(λj ) =
(

−κj − λj

2

)
eκj ζj +

(
κj − λj

2

)
e−κj ζj ,

where

κj =
√

λ2
j

4
− 1, (32)

ζj = x − t

[(
4λ2

j − 2
√

3εα1λj + α2
1 + 8

)
+

(
y2 + 4

√
3σελjy − 4σα1y

)
4σ 2

]
. (33)
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4.1. One-soliton-like solutions of equation (1)

For the first DT, using equations (8) and (24) leads to a new solution of equation (2)

u1[1] = 2Ĥ = 2
[
1 + κ2

1 sech2(κ1ζ1)
]
, (34)

with κ1 and ζ1 as defined above. Similarly, for the second DT, another new solution of
equation (2) can be obtained from equations (8) and (28)

u2[1] = 2Ĥ = 2

[
1 +

4κ2
2 sech2(κ2ζ2)

λ2 + 2κ2 tanh2(κ2ζ2)

]
, (35)

where κ2 and ζ2 have been defined in expressions (32) and (33).
Furthermore, through the scaling transformation (3), we can obtain two types of soliton-

like solutions of equation (1) as

φ1[1] = −12D

A

[
1 + κ2

1 sech2(κ1ϑ1)
]
, (36)

φ2[1] = −12D

A

[
1 +

4κ2
2 sech2(κ2ϑ2)

λ2 + 2κ2 tanh2(κ2ϑ2)

]
, (37)

where ϑi = ξ − Dτ
[(

4λ2
j − 2

√
3εα1λj + α2

1 + 8
)

+ η
(
cη + 2

√
6cDελj − 2

√
2cDα1

)/
2D

]
(i = 1, 2).

Both expressions (36) and (37) possess soliton-like structures, which might be very useful
for the description of some physical phenomena such as the evolution of the ring dark soliton
in a Bose–Einstein condensate with a thin disc-shaped potential [1], the dust-acoustic wave
propagation in a cosmic dusty plasma [2] and the relativistically magnetosonic solitary wave
propagating in a collisionless plasma [6]. For convenience, we only discuss expression (36)
and neglect expression (37) since the latter has the similar properties to the former.

It is shown in expression (36) that the amplitude of the solitary wave is merely
dependent on the physical parameter of the dusty plasma such as µl, µh, β1 and β2. For
the dusty plasma with two-temperature ions, the dust-acoustic soliton-like structures are
rarefactive if A/D > 0, while compressive with A/D < 0 [5]. As claimed in [5], if the
rarefactive solitary-wave/soliton-like structures exist, the phase velocity should satisfy c2 > F ,
where F = (

γdB
2 − 2B2 + β2

1 − β2
1µh + β2

2µh − β2
1µl + µl

)/
B3s (γd + 1). Whereas, if the

solitary-wave/soliton-like structures are compressive, the condition for the phase velocity to
be satisfied is 0 < c2 < F . Then, the temperatures of ions and electrons will significantly
affect the existence and amplitude of the compressive and rarefactive soliton structures [5].

In order to better understand the mechanism of the propagation of dust-acoustic solitary
waves with the development of time, we will draw some pictures via expression (36) in line
with the dusty plasma background.

Figure 1 displays the compressive parabola-soliton-like profile, where the choice of the
physical parameters in the dusty plasma with two-temperature ions is based on the available
data presented in [5]. Furthermore, it is worth noting that the transverse perturbation (η)
significantly affects the soliton structure (see figure 1). When the transverse perturbation (η)
is small, we know that the shape of the soliton keeps unchangeable during the propagation
process of the soliton as shown in figure 1(a), which is identical with the result in [5].
However, if the transverse perturbation (η) becomes larger, the soliton warps in certain radian
with invariant amplitude (see figures 1(b)–(f )). Additionally, the solitary wave solution is
a parabola soliton and its shape will slightly deform with the time going on. As seen in
figures 1(b)–(f ), the structure of the parabola soliton is ‘out-going’ and opens horizontally to
the negative ξ -axis with −∞ < τ < 0, while it is ‘in-going’ and opens to the positive ξ -axis
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Figure 1. The same parameters for (a)–(f ) are γd = 3, c = √
0.5, µl = µh = 0.6, β1 = 1,

β2 = 0.01, s = 0.5, α1 = ε = 1 and λ1 = 2.1. (a) The one-compressive soliton structure for
expression (36) with small η at τ = −0.1. (b)–(f ) The one-parabola-soliton solution surfaces via
expression (36) with large η and different values of τ .
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Figure 2. The one-rarefactive-parabola soliton surfaces for expression (36) with the same physical
parameters as in figure (1) except for µh = 1. (a) The one-soliton-like solution surface via
expression (36) with small η at τ = −0.1. (b)–(f ) The one-soliton-like solution surfaces via
expression (36) with large η and different values of τ .

with 0 < τ < ∞. When τ = 0, it reduces to a static soliton as illustrated in figure 1(d). The
vertex of the parabola soliton is variable along the axis of symmetry as time goes on.

In fact, for suitable choice of the values of the physical parameters in the dusty plasma
with two-temperature ions, we can get the rarefactive parabola soliton (see figure 2). We also
note that figure 2 has the similar properties as those in figure 1.

Figures 1 and 2 show that the parabola soliton forms a part of a loop soliton. As
stated in [34], several transition region and coronal explorer (TRACE) images have indicated
the observation of this morphology in the coronal plasma, i.e., the long-duration post-flare
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Figure 3. The same parameters for (a)–(f ) are γd = 3, c = √
0.5, µl = µh = 0.6, β1 = 1,

β2 = 0.01, s = 0.5, α1 = ε = 1, λ1 = 2.05 and λ2 = −2.05. (a) The compressive soliton
structure via expression (38) with small η at τ = −0.1. (b)–(f ) The two-parabola-soliton solution
surfaces for expression (38) with large η and different values of τ .

loops [5]. We also hope that such morphology may be helpful for investigating the dust-
acoustic wave propagation in the dusty plasma [1, 5] and in a cosmic dusty plasma environment
such as the supernova shells or Saturn’s F-ring [2, 22].

4.2. Two-soliton-like solution of equation (1)

Utilizing the third DT (29) and equations (30) gives the new solution (Ĝ3[2], Ĥ 3[2]) of
equations (4)–(7). Therefore, the two-soliton-like solution of equation (1) is of the form

φ3[2] = −12D

A

[
1 − 2(λ3 − λ4)

X3 − X4

] [
1 +

(λ3 − λ4)X3X4

2 (X3 − X4)

]
, (38)

where λ3 �= λ4, X3 = λ3 + 2κ3 tanh(κ3ϑ3) and X4 = λ4 + 2κ4 tanh(κ4ϑ4), with κj and
ϑj (j = 3, 4) as defined in subsection 4.1.

Expression (38) can also present two types of dust-acoustic wave structures, namely, the
compressive and rarefactive solitons, when the physical parameters involved in the system
are chosen suitably. To illustrate the above two structures, we plot some pictures at different
values of τ on the basis of the data in [5] (see figures 3 and 4).

With different values for the physical parameters included in expression (38), figures 3
and 4 display the compressive and rarefactive soliton interaction structures, respectively.
Additionally, from the above two sets of photographs, we can also see the significant influence
of the transverse perturbation (η) on the soliton structure. It is shown in figures 3 and 4
that there is no change of shapes between solitons after the interaction except for a phase
shift. Thus, it can be concluded that expression (38) has the following characteristics: (i) its
soliton structure is ‘out-going’ and opens horizontally to the minus side of the ξ -axis with
−∞ < τ < 0, while it is ‘in-going’ and opens to the plus side of the ξ -axis with 0 < τ < ∞;
(ii) when τ = 0, it degenerates into a static single soliton (see figures 3(d) and 4(d)); (iii) the
vertex of each parabola soliton is variable along the corresponding axis of symmetry as the
time goes on.
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Figure 4. The two-rarefactive soliton structure for expression (38) with the same physical
parameters as in figure 3 except for µh = 0.9. (a) The two-soliton-like solution surface via
expression (38) with small η at τ = −0.1. (b)–(f ) The two-parabola-soliton solution surfaces via
expression (38) with large η and different values of τ .

Though equation (1) in the non-planar cylindrical geometry is obviously different from
the planar-geometry KP equation in [11], the former is transformable to the latter because
of the existence of a Lie-point transformation [23]. Thus, analogous results to those in [11]
for the KP equation in planar geometry can be obtained for equation (1) such as the N-soliton
solution, cnoidal wave-typed solution, an infinite series of conservation laws and stability of
the solitary waves. However, it should be noted that the one- and two-soliton-like solutions
obtained in this section are distinct from the results in [11] due to the difference of geometry
[17].

4.3. Three-soliton-like solution of equation (1)

We choose λ5 �= λ4 �= λ3 and transform (Ĝ3[2], Ĥ 3[2]) to (Ĝ3,1[3], Ĥ 3,1[3]) using the first
basic DT (17). Assuming

�(x, y, t) = β3[c3ϕ1(λ5) + (λ5 + d3)ϕ2(λ5)]

(1 − c3)[(λ5 + a3)ϕ1(λ5) + b3ϕ2(λ5)]
(39)

and using equation (24) yield

Ĝ3,1[3] = −λ5 − Ĥ 3[2]�2 + 1

�
, (40)

Ĥ 3,1[3] = Ĥ 3[2] − (Ĥ 3[2]�)x. (41)

Correspondingly, we can get the three-soliton-like solution of equation (2) as

u3,1[3] = 2Ĥ 3,1[3] = 2[Ĥ 3[2] − (Ĥ 3[2]�)x]. (42)

By the scaling transformation (3) and expression (42), the three-soliton-like solution of
equation (1) can also be expressed explicitly.
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4.4. Four-soliton-like solution of equation (1)

We take λ6 �= λ5 �= λ4 �= λ3 and iterate the third DT (29) once again to convert (Ĝ3[2], Ĥ 3[2])
to (Ĝ3[4], Ĥ 3[4]).

By setting

�̂1(λ5) = δ3[(λ5 + a3)ϕ1(λ5) + b3ϕ2(λ5)] = δ3�1(λ5),

�̂2(λ5) = θ3[c3ϕ1(λ5) + (λ5 + d3)ϕ2(λ5)] = θ3�2(λ5),

�̂1(λ6) = δ3[(λ6 + a3)ϕ1(λ6) + b3ϕ2(λ6)] = δ3�1(λ6),

�̂2(λ6) = θ3[c3ϕ1(λ6) + (λ6 + d3)ϕ2(λ6)] = θ3�2(λ6),

�̂ = �2(λ5)�1(λ6) − �1(λ5)�2(λ6),

â3 = −λ6�2(λ5)�1(λ6) − λ5�1(λ5)�2(λ6)

�̂
,

b̂3 = (1 − c3)(λ6 − λ5)�1(λ5)�1(λ6)

β3�̂
,

ĉ3 = β3(λ5 − λ6)�2(λ5)�2(λ6)

(1 − c3)�̂
,

d̂3 = λ6�1(λ5)�2(λ6) − λ5�2(λ5)�1(λ6)

�̂
,

we have

Ĝ3[4] = Ĝ3[2] − ∂

∂x
log(1 − ĉ3),

Ĥ 3[4] = (1 − ĉ3)(Ĥ 3[2] − b̂3),

which is a compatible solution of equations (4)–(7), and get the four-soliton-like solution of
equation (2),

u3[4] = 2Ĥ 3[4] = 2(1 − ĉ3)(Ĥ 3[2] − b̂3). (43)

Similarly, we can obtain the four-soliton-like solution of equation (1) through the scaling
transformation (3) and expression (43).

5. Conclusions

In this paper, the cylindrical KP equation, i.e., equation (1), is under investigation which
can describe the propagation of dust-acoustic waves in the dusty plasma consisting of cold
dust particles, an unmagnified, collisionless, isothermal electron and two-temperature ions.
Through the decomposition method, such a (2+1)-dimensional equation has been decomposed
into two variable-coefficient (1+1)-dimensional integrable NLEEs of the same hierarchy.
Three kinds of DTs for these two (1+1)-dimensional equations have been constructed and
the multi-soliton-like solutions of equation (1) have also been explicitly obtained. Of
physical interest, we have specially analysed the one- and two-parabola-soliton solutions for
equation (1). Through the graphical analysis for some sample solutions, we have discussed the
effects resulting from the physical parameters in the dusty plasma and transverse perturbation,
and pointed out some possible applications in the Bose–Einstein condensates, the dusty plasma
with two-temperature ions and a cosmic dusty plasma environment such as the supernova shells
or Saturn’s F-ring.
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